TP 1 : FROTTEMENT STATIQUE DE GLISSEMENT

Objectifs Spécifiques:

- ❖ Déterminer les coefficients de frottement de divers matériaux par rapport à l'acier.
- ❖ Déterminer l'angle du cône des différents couples de matériaux en contact.

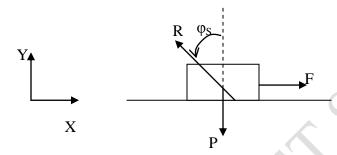
Condition de Réalisation :

- * Fascicule du TP
- ❖ Salle de TP mécanique générale
- ❖ Banc d'étude du frottement MM3.

Mots Clés:

- **❖** Frottement
- Adhérence
- Glissement

Pré - requis :


- **Statique** des solides.
- Frottement sur plan horizontal
- Frottement sur plan incliné

ETUDE THEORIQUE

I-Frottement sur plan horizontal:

On place sur un plan horizontal un solide S sur lequel on exerce une force F capable d'amorcer le glissement.

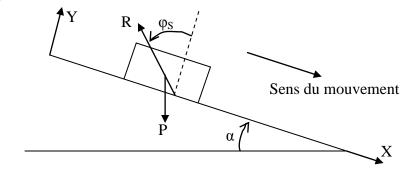
PFS : somme des forces extérieures égale au vecteur nul : $\vec{F} + \vec{P} + \vec{R} = \vec{0}$

Projection sur $X / : F - R . \sin(\varphi_S) = 0$ (1)

Projection sur $Y / : -P + R .cos(\phi_S) = 0$ (2)

(1) / (2) : $F/P = tg(\varphi_S)$

soit : $tg(\phi_S) = \mu_S$ on a donc F = P . μ_S

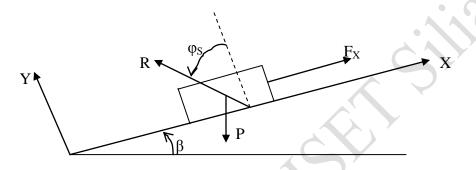

avec : μ_S : le coefficient de frottement statique

 $\phi_S\!:$ angle de frottement

II – Frottement sur plan incliné :

II – 1 : premier cas d'inclinaison : soit un plan incliné à angle d'inclinaison (α) variable, sur celui ci on place un solide S de masse M, l'équilibre de ce solide est assuré si on a : $t\alpha(\alpha) = t\alpha(\alpha)$

$$tg(\phi_S)=tg(\alpha)$$


En effet, à partir des conditions d'équilibre on obtient par projection :

Projection sur X : $-R . \sin(\varphi_S) + P . \sin(\alpha) = 0$ (1)

Projection sur Y /: + R $.\cos(\varphi_S)$ – P $.\cos(\alpha) = 0$ (2)

Ce qui donne : $tg(\varphi_S) = tg(\alpha)$

II − 2 : deuxième cas d'inclinaison :

Soit F_x: force capable d'amorcer le glissement du solide S

β: angle d'inclinaison

On écrivons les conditions d équilibre, on obtient :

Projection sur $X / : F_X - P . \sin(\beta) - R . \sin(\phi_S) = 0$

Projection sur Y /: $-P \cdot cos(\beta) + R \cdot cos(\varphi_S) = 0$

Soit
$$F_X - P . \sin(\beta) = R . \sin(\phi_S)$$
 (1)

$$-P.\cos(\beta) = R.\cos(\varphi_S) \qquad (2)$$

$$(1)/(2): tg(\varphi_S) = \mu_S = \frac{F_X - P.\sin(\beta)}{P.\cos(\beta)}$$

$$F_X = M.g.(\sin(\beta) + \mu_S.\cos(\beta))$$

$$F_X = M.g.(\sin(\beta) + \mu_S.\cos(\beta))$$

Dossier Pédagogique

Manipulation:

On dispose de deux matériaux différents :

- Plexiglas;
- Bois.

I – Frottement sur plan horizontal :

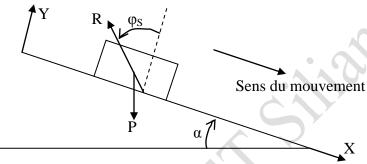
- 1 Mettre le plan en position horizontale (à contrôler avec le niveau à bulle).
- 2 Placer sur le plan le chariot muni d'une plaque , noter la masse totale M (chariot + plaque).
- 3 Placer les masses marquées sur le crochet jusqu'au début de glissement , noter alors la masse m .
- 4 Refaire ce travail en plaçant le chariot dans quatre positions différentes sur le plan.
- 5 Dresser un tableau de valeurs :

Positions	1	2	3	4
Masse (m) (Kg)	~ (
Coefficient de frottement (f)				

- 6 Donner le coefficient de frottement moyen $f_{moy} = \frac{\sum_{i=1}^{n} f_i}{n}$
- 7 Refaire ce travail pour la plaque en bois et déterminer le coefficient de frottement moyen.

II – Etude du frottement plexiglas – acier :

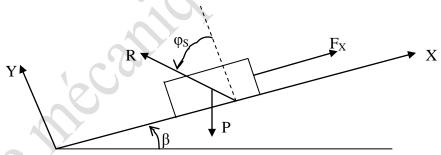
- 1 Pour cette plaque en plexiglas , placer une masse M1 uniformément répartie sur le chariot et enregistrer la masse m provoquant le début du glissement .
- 2 Refaire ce travail pour 5 masses M1 différentes .
- 3 Remplir le tableau de valeurs suivant :


Masse totale M			
Masse m			

- $4 \text{Tracer la courbe } \mathbf{m} = \mathbf{f} (\mathbf{M}).$
- $\mathbf{5}$ En déduire le coefficient de frottement (\mathbf{f}) .
- $\mathbf{6}$ Faire une comparaison entre les valeurs trouvées de ce coefficient de frottement .

- 7 Quelle conclusion peut on tirer de cette étude ?
- 8 Proposer une autre méthode pour la détermination du coefficient de frottement plexiglas –acier .

III – Etude de frottement sur plan incliné (utiliser maintenant la plaque en bois)


A – Premier cas d'étude

- 1- Mettre le plateau à étudier vide sur le plan et en faisant varier l'angle d'inclinaison de ce dernier jusqu'à l'obtention du glissement du plateau et noter l'angle α
- 2 Refaire l'opération au moins trois fois.

Calculer $\alpha_{moy} = \frac{\sum_{i=1}^{n} \alpha_i}{n}$ et par la suite le coefficient de frottement

B – Deuxième cas d'étude (fixer $\beta = 20^{\circ}$)

- 1 Pour cette plaque en bois , placer une masse M2 uniformément répartie sur le chariot et enregistrer la masse m provoquant le début du glissement .
- 2 Refaire ce travail pour 5 masses M2 différentes.
- 3 Remplir le tableau de valeurs suivant :

Masse totale M2			
Masse m			

- $4 \text{Tracer la courbe } \mathbf{m} = \mathbf{f} (\mathbf{M}).$
- 5 En déduire le coefficient de frottement (f).
- 6 Faire une comparaison entre les valeurs trouvées de ce coefficient de frottement .
- 7 Quelle conclusion peut on tirer de cette étude ?

On donne:

- La masse du chariot + Plexiglas = 158 g.
- La masse du chariot + Bois = 156 g.